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Abstract

This paper is the first of several papers de-
signed to demonstrate how the application of
item response models in the behavioral sciences
can be used to enhance the conceptual and
technical toolkit of researchers and developers
and to understand better the psychometric
properties of psychosocial measures. The pa-
pers all use baseline data from the Behavior
Change Consortium data archive. This paper
begins with an introduction to item response
models, including both dichotomous and poly-
tomous versions. The concepts of respondent
and item location, model interpretation, stan-
dard errors and testing model fit are introduced
and described. A sample analysis based on data
from the self-efficacy scale is used to illustrate
the concepts and techniques.

Introduction

The process currently employed to assess the

reliability and validity of scales in the behavioral

sciences is highly influenced by the theory of a true

score [1] or the actual amount of the construct being

measured if all sources of error could be eliminated.

The idea of a true score provides the theoretical

foundation for developing reliability measures

such as the widely used Cronbach’s alpha [2],

and formed the basis of classical test theory

(CTT) (also referred to as the classical true score

model) developed in the psychological and educa-

tional measurement context at a time when norm-

referenced testing dominated those areas. ‘Grading

on a curve’ or diagnosing illness based on the top or

bottom 10% of the population on a particular

measure is an example of norm-referenced testing.

Guttman’s [3] scalogram approach (also known

as Guttman scaling) initiated the notion that tests

should have a meaningful interpretation in terms

of the items that comprise the test. Following

Guttman, and in contrast to the classical approach,

item response modeling (IRM) integrates the items

into the measurement model thus narrowing the

unit of measure of an instrument to the item level.

The idea behind IRM is that people respond to

items on tests or surveys based on their ability or

attitude and the difficulty or endorsability of the

item. In a testing situation, if their ability is high and

an item is easy, then they have a high probability of

selecting the right answer. Likewise, if people’s

attitude is strong (e.g. exercise is good) and the item

is easily endorsed (e.g. exercise can help me live

better) then they have a high probability of en-

dorsing the item strongly. IRM analysis of re-

sponses to a test or survey can provide estimates of

each person’s and each item’s location on the con-

struct of interest, along with standard errors for each

estimate rather than an aggregated error for the

entire test or survey. Hence, IRM is better suited to

assessing the reliability and validity of a criterion-

referenced test because the properties of the test

can be assessed at any selected critical cutoff. The
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use of criterion-referenced procedures is necessary

in the behavioral sciences when assessing the

efficacy of interventions in changing behavior.

However, researchers continue to use classical

psychometric procedures that are not well suited

to assess the measurement properties of these tests.

Although IRM encompasses many issues of

measurement, including item discrimination, guess-

ing parameters, rater effects, facets and item

banking, this paper seeks only to provide an

introduction to IRM in the context of behavioral

measures. We have chosen specifically to focus on

one family of models, the Rasch one-parameter

models, because they are the simplest and a good

starting place. The analyses and interpretations

presented are illustrated using baseline data from

the self-efficacy (SE) scale collected by the Behav-

ior Change Consortium (BCC) [4], a group of

projects at different sites examining people’s

changes in nutritional, smoking or exercise behav-

iors in response to intervention. This paper is the

first in a series. Others will examine additional IRM

measurement issues such as (i) the comparison of

classical and IRM perspectives [5]; (ii) the possi-

bility of multidimensionality [6] and (iii) the

possibility, advantages and limitations of equating

tests [7]. This paper is based on an account of IRM

given in Wilson [8]. Our purpose is to provide the

reader with a foundation of terms and concepts in

IRM with which to evaluate literature and instru-

ments in the behavioral sciences using contempo-

rary measurement tools.

An example: the SE scale for exercise

The BCC [4] proposed to measure not only

behavior change upon intervention but also some

of the mediating variables such as SE associated

with those changes. One of the measures, the SE

scale for exercise (SE scale) [9], proved a good

choice for demonstrating the use of item response

models in analyzing a self-report instrument that

canvasses respondent attitudes. Only baseline data

were used; no results of intervention were analyzed

for the demonstration of IRM.

The SE scale was developed out of a social-

cognitive approach to behavior change to help

explain variations in exercise behaviors. In contrast

to an enduring trait such as self-motivation, SE

is thought to be a situational belief dependent on

current personal attitudes and the particular envi-

ronment related to the task. SE is defined as ‘a

specific belief in one’s ability to perform a particular

behavior’ [9 p. 396]. If SE helps mediate behavior

change, then those with greater SE should have

greater amounts of behavior change in response

to interventions than those with lower SE. The SE

scale consists of 14 items that express the certainty

the respondent has that he or she could exercise

under various adverse conditions (see Table I).

Items reflect ‘potentially conflictual situations’

based on ‘information gained from previous re-

search with similar populations in which relapse

situations had been identified’ [9 p. 401]. Respond-

ents rate each item 0, 10, 20, 30 and on up to 100%

in 10% increments (resulting in 11 categories of

responses): from 0% indicating ‘I cannot do it at all’

to 100% indicating ‘certain that I can do it’. Scoring

averages the responses if at least 13 items are

completed.

Table I. SE scale for exercise

Item number Items: ‘I could exercise ...’

1 ... when tired

2 ... when feeling anxious

3 ... when feeling depressed

4 ... during bad weather

5 ... during or following a personal crisis

6 ... when slightly sore from the last time

I exercised

7 ... when on vacation

8 ... when there are competing interests

(like my favorite TV show)

9 ... when I have a lot of work to do

10 ... when I haven’t reached my exercise goals

11 ... when I don’t receive support from family

or friends

12 ... following complete recovery from an illness

which has caused me to stop exercising for a

week or longer

13 ... when I have no one to exercise with

14 ... when my schedule is hectic
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The data on the SE scale used for this paper come

from two different BCC projects. The first project,

conducted out of Stanford University, focused on

‘exercise advice by human or computer’ [10]. The

Stanford University project sought to increase

physical activity among middle-aged and older

adults. Researchers compared adoption and main-

tenance of exercise programs between those who

received counseling by a person or a computer,

testing whether extrinsic or intrinsic motivation is

a more powerful force in behavior change. The

second project, conducted out of the University of

Tennessee, focused on the ‘Health Opportunities

with Physical Exercise trial’ [11]. The University of

Tennessee project evaluated peer versus provider

interventionist encouragement and their effect on

overcoming barriers to increased physical activity

for the urban poor. Several behavioral variables

were collected related to physical activity and

compared pre- and post-intervention. In both of

these projects, the researchers hypothesized that SE

was one of the mediating variables for the behav-

ioral changes assessed in these studies. The SE

scale was intended to gauge whether more SE was

associated with greater success in the intervention.

The data used in the analyses came from

respondents whose characteristics are summarized

in Table II. Because this data set came from two

different studies with different populations of in-

terest, the respondent characteristics had a wide

range. The mean age of the respondents was 53

(610.7), ranging from 28 to 85 years old. Almost

half of the respondents were between 45 and 60

years old, reflecting the Stanford University site’s

focus on middle-aged and older respondents.

The mean income level was $45 000 (628 000),

ranging from <$10 000 to >$80 000. About 44%

of the respondents had an annual income of

<$40 000, reflecting the University of Tennessee

site’s focus on the urban poor. About 47% indic-

ated that they were non-White. Fifty-two percent

were either married or living with a partner.

Eighty-eight percent had at least some education

past high school. Only 22% were male.

In order to demonstrate dichotomous data anal-

ysis and the logic of IRM, the 11 categories of

response (0–100% in 10% increments) were first

collapsed into two, <50 and >50%. Explicitly, the

categories ‘0, 10, 20, 30, 40, 50%’were coded to ‘0’,

and the other categories ‘60, 70, 80, 90, 100%’ were

coded as ‘1’. The dichotomized data will be used

to illustrate aspects of item response models. Later,

the polytomous data will be analyzed directly.

The Rasch model

Item response models differ from the CTT model in

several critical ways. First, item response models

Table II. Characteristics of the respondents in this data set

Respondent characteristics n %a

Site affiliation 504

Stanford University 221 44

University of Tennessee 283 56

Gender 504

Male 110 22

Female 394 78

Race 503

White, not Hispanic 269 53

Black, not Hispanic 202 40

Hispanic 17 3

Other 16 3

Age 502

28–45 121 24

46–59 247 49

60–85 134 27

Marital status 502

Not married 72 14

Presently married 243 48

Living with partner 19 4

Divorced 114 23

Separated 23 5

Widowed 31 6

Education level 503

Less than high school diploma 13 2

High school diploma 49 10

Some college, trade, vocational

or technical school

155 31

4 years college/graduated 114 23

Post-graduate work 172 34

Income (per year) 490

$0–39 999 214 44

$40 000–79 999 139 28

$80 000+ 137 28

aPercentages may not add to 100 for some characteristics
because of rounding.
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are expressed at both the item and test levels,

while CTT models are expressed only at the test

level, where the focus is on the total score of an

instrument or test. Second, item response models

focus on the ‘probability’ of the observed responses

rather than the responses themselves. Third, item

response models, such as the Rasch model, assume

that the probability of selecting a given response to

Item i is modeled as a function of both the

respondent’s location on the variable h (theta) and

parameters associated with the item such as the

item’s location on the variable d (delta). Note that h
and d represent certain locations on the underlying

construct. The construct is the latent variable that

the instrument is intended to measure—it derives its

meaning from both the characteristics of the people

being measured and the set of items being used for

measuring. Fourth, this probability is assumed to be

a specific function of h and d, generally one that is

monotonically increasing, with asymptotes to 0 and

1.0 probability at plus and minus infinity, respec-

tively (i.e. because we assume that we can never be

0% sure, or100% sure, that the respondent will

select a given response option no matter how weak

or strong his/her propensity is). If knowledge is

assessed, as in an educational context, the terms

respondent ‘ability’ and item ‘difficulty’ make

sense. If a psychosocial construct is measured

‘respondent attitude’ and ‘item endorsability’ may

be more appropriate terms to use. For introductory

purposes, however, respondent and item ‘location’

will be used to emphasize their relationship to the

same construct. In the context of the SE scale,

‘respondent location’ would refer to the amount of

SE the person has. In CTT, this would be analogous

to the total score on the SE scale. In the Rasch

model, ‘item location’ refers to the amount of SE

that a person would have to have to endorse that

question. Specifically, the item location would be

the point on the scale at which a generic person

would need to be in order to have a 0.50 probability

of responding positively to that item.

Let us consider three situations:

(i) h = d, when the respondent and item locations

are the same, the probability of selecting

response ‘1’ (instead of ‘0’) to Item i is 0.5

(see Fig. 1). This occurs when the respondent’s

amount of SE matches the level of SE assessed

by the item. For example, if the respondent

had a moderate amount of SE for exercising

and the endorsability of, say, exercising while

on vacation targeted those with a moderate

amount of SE, the respondent’s probability of

selecting response option ‘1’ would be 0.5;

(ii) h > d, when the respondent location is greater

than the item location then the probability

of selecting 1 to this item is >0.5 (see Fig. 1).

For example, if the respondent had a high

amount of SE for exercising, but exercising

while on vacation targets a behavior that

requires a moderate amount of SE, the re-

spondent is expected to have a high pro-

bability of selecting response option 1,

indicating great certainty that the respondent

could do it and

(iii) h < d, when the respondent location is less

than the item location then the probability of

selecting 1 to this item is <0.5 (see Fig. 1).

For example, if the respondent has a low

amount of SE for exercising and exercising

while on vacation is targeting a behavior that

requires a moderate amount of SE, the re-

spondent is expected to have a low probability

of selecting response option 1 because the re-

spondent does not think he or she could ef-

fectively maintain an exercise program while

on vacation.

Fig. 1. Representation of three relationships between respondent

location and the location of an item.
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As indicated above, the probability of selecting

response 1 to Item i (Xi = 1) is a function, f, of both
respondent location (h) and item location (d); more

specifically it is a function of the ‘difference’

between respondent location and that item location

(h � di). This relationship can be expressed by

a mathematical representation presented here as

Equation (1):

PðXi = 1jh; diÞ= f ðh� diÞ: ð1Þ

Graphically, this relationship can be plotted and it is

shown in Fig. 2. (Note that the orientation of the

graph has been rotated compared with Fig. 1 to

match the typical way this graph is shown.) The

respondent locations, h, are plotted on the horizon-

tal axis, and the probability of selecting response

‘1’ to a given item is shown on the vertical axis.

This type of figure is customarily called an ‘item

response function’ (IRF) (other common terms are

‘item characteristic curve’ and ‘item response

curve’) because it describes how a respondent

responds to an item. The IRF depends on the

respondent’s total amount of SE to perform the

behavior and the level of SE assessed by the item.

Equation (1) specified that the probability of

selecting a given response option is a function of

the difference between respondent location (h) and
item location (d). For the Rasch model, the actual

function for the probability of selecting a given

response option to Item i, where e indicates the

natural log base of 2.718, is

PðXi = 1jh; diÞ=
e
ðh�diÞ

1 + e
ðh�diÞ : ð2Þ

The Rasch model equation is the simplest model,

and hence a good starting point for understanding

item response models. Although the expression on

the right-hand side looks somewhat complex, it is

a function of h � di, as in Equation (1). Respondent
location (h) and item location (d) are both graph-

ically presented on the construct map (a graph

representing the whole construct or idea being

measured) (Fig. 3). This difference governs the

probability that the respondent will select the

positive response option. These relationships are

displayed in a ‘Wright map’ as shown in Fig. 3,

with the respondents’ locations and items’ locations

presented on either side of a vertical line.

There are a number of features in the Wright map

that are worth pointing out. The dashed vertical line

expresses the construct or latent variable in logits,

which relate the latent variable to the probability of

response. (The relationship of a logit, technically

the ‘log of the odds’, to Equation (2) is shown in a

later section.) The logits provide the units of the

construct, and are specified to the left of the vertical

line. The raw score units of the SE scale are also

presented to the left of the logits. The Wright map

shows that a logit of 0, which corresponds to having

a moderate amount of SE, is similar to a raw SE

scale score of 7. This provides a translation between

the metric of the item response map (the logits)

and the more familiar raw score metric (as used

in the classical approach). The results from an item

response analysis can be transformed into the raw

score metric using this (non-linear) relationship.

On the left-hand side of the vertical line, under

‘Respondents’, the locations of the respondents on

the logits scale are indicated by X’s (each ‘X’ may

indicate more than one respondent). These form

a histogram on the Wright map showing the shape

of the respondent distribution. Figure 3 shows

a fairly flat (not a normal) distribution for the

respondents’ locations, indicating that respondents

had a wide range of SE in overcoming barriers
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Fig. 2. Relationship between respondent location (h) and
probability of a response of ‘1’ for an Item i with

endorsability (d) of 1.0.
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toward physical activity. Given that these are

baseline data, we would have expected to see

a somewhat skewed distribution with more re-

spondents having lower levels of SE (i.e. more

respondents with negative logits or <0 logit on the

SE scale).

Finally, on the right-hand side of the vertical line,

under ‘Items’, the locations of the items are shown.

Each item location indicates the amount of SE

a generic person must have if there is a 0.50 pro-

bability of that person giving a positive response to

these items. The Wright map shows that the 14

items are located between 1.0 and �1.0 logits.

Because of the nature of the IRF for each item,

these item locations indicate the location on the SE

continuum at which each item can provide the most

information. For example, Item 7, located at �0.01

logits, is expected to provide more information for

respondents who possess 0.0 logit of SE (i.e.

respondents that have a moderate amount of SE)

than respondents with much higher or lower

amounts. Ideally, the location of the set of items

would have the same range as the location of the set

of respondents, unless the scale is designed to

provide more precision (i.e. lower standard error of

measurement) only at a certain point along the SE

continuum.

Armed with Equation (2), the relationship be-

tween the logits and the probability of response

can be made clear. For the respondent at 0.0 logit

in Fig. 3, the probability of responding ‘1’ on

Item 7 should be 0.50 (because the respondent

Fig. 3. Wright map of SE scale based on dichotomous items.
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and the item are at the same location on the Wright

map). To check this note that

PðXi = 1j0:0; 0:0Þ=
e
0:0�0:0

1 + e
0:0�0:0 =

e
0:0

1 + e
0:0

=
1

1 + 1
= 0:50:

Similarly, for a respondent located at 1.0 logit, the

probability of a ‘1’ on Item 7 will be >0.50, because

the respondent is higher than the item. To be exact,

the probability will be

PðXi = 1j1:0; 0:0Þ=
e
1:0�0:0

1 + e
1:0�0:0 =

e
1:0

1 + e
1:0

=
2:718

1 + 2:718
= 0:73:

Similarly, for the respondents at �1.0 logit, the

probability of a ‘1’ will be <0.50, because the re-

spondent is lower than the item. To be exact, the

probability will be e�1/(1 + e�1) = 0.27. Thus, in

the Wright map (vertical) distances relate to

probability.

Where do the estimates of the respondent and

item locations come from? The equations given

above for the Rasch model are not directly solvable

for the hs and ds. Therefore, they are estimated using

one of several statistical estimation approaches.

Although several software packages can perform

these estimations, the software used for this paper is

called ‘ConQuest’ [12]; it performed all the statis-

tical calculations needed in the following sections.

Discussion of estimation is beyond the scope of this

paper. Interested readers should consult Adams and

Wilson [13]; another useful source on the Rasch

model is Fischer and Molenaar [14].

The Wright map shown in Fig. 3 is not just a

sketch of the ‘idea’ of the construct of SE, it is an

empirical map, based on respondents’ self-reports

that can be used to interpret the measure, both

qualitatively and quantitatively. The respondents

range from those at the top who are ‘more confident’

that they can be effective at continuing an exercise

program to those that are ‘less confident’ at the

bottom. Table III shows the actual equivalence

between the raw scores and the logit estimates.

More than two response categories

The discussion and graphs above provided inter-

esting ways to interpret output from the measure-

ment model when the data were dichotomous (i.e.

just two response categories). In this section, these

principles are generalized to items with more than

two ordinal response categories (called ‘polyto-

mous’ data). First, we need to develop a some-

what simpler way to express Equation (2). Some

algebra will show that, following Equation (2), the

ratio of the probability of 1 and 0 is a relatively

simple expression eh�di : Then, taking the log of

that, we get

log
PðXi = 1Þ
PðXi = 0Þ

� �
= h� di: ð3Þ

Now, the ‘odds’ of an event is the proportion of

times that an event occurred compared with the

times it did not occur. Thus, Equation (3) gives

an expression for the log of the odds of a ‘1’ (as

opposed to a ‘0’). The log of the odds is often called

the ‘logit’. Thus, Equation (3) can be rewritten as

logitð1 : 0Þ= h� di: ð4Þ

Table III. Raw score to logit estimate equivalences,

dichotomous data

Raw score Logit estimate Standard error

0 �3.53 1.51

1 �2.34 0.91

2 �1.73 0.73

3 �1.29 0.65

4 �0.93 0.60

5 �0.60 0.58

6 �0.30 0.56

7 �0.01 0.56

8 0.29 0.56

9 0.59 0.58

10 0.92 0.61

11 1.29 0.66

12 1.74 0.74

13 2.36 0.91

14 3.56 1.51

M. Wilson et al.
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This expression highlights the simple relationship

between the person location and the item location

in the Rasch model.

This gives a way to generalize the dichotomous

expression in Equation (4) to a polytomous rela-

tionship. Consider the case of items with five

ordered response categories or scores: 0, 1, 2, 3

and 4. Suppose that we assumed that the logit

relationship in Equation (4) held between item

scores 0 and 1 as

logitð1 : 0Þ= h� di1; ð5Þ

where the item location di. has been relabeled di1
to denote that this is just for the 0/1 comparison.

Then, just repeat this for the pair of scores 1 and 2:

logitð2 : 1Þ= h� di2: ð6Þ

Repeat this again for the subsequent pairs 2 and 3

and 3 and 4:

logitð3 : 2Þ= h� di3; ð7Þ

logitð4 : 3Þ= h� di4: ð8Þ

These four equations are sufficient to generalize

the Rasch model to polytomous data where there

are five ordered response categories. The parame-

ters dik are known as ‘step parameters’—they

govern the probability of making the ‘step’ from

Score k � 1 to Score k [15]. For example, look at

Equation (8): the relationship says that, if a re-

spondent is in response category either 3 or 4, then

the relative probability of being in response cate-

gory 4 is a function of h � di4. That is, it is a

function of the difference between the person

location and the step parameter. In general, similar

equations can be developed for any finite number of

ordered categories, and there will be one equation

less than the number of categories. This is because

they are related to the comparison between score

categories k�1 and k, and there is one less step

comparison than there are categories, and so one

less step parameter. See Wright and Masters [15]

for a lengthier discussion of these step parameters

and their interpretation. Thus, for the SE scale, there

will be 10 steps for the 11 categories of response

(0–100%).

To develop a graphical expression for the

polytomous case, we start with the IRF for Xi = 0,

where 0 = 0% level of SE. In the dichotomous case,

the probability of Xi = 0 is simply 1.0 minus the

probability of Xi = 1. In other words, the probability

of Xi = 0 plus the probability of Xi = 1 equals 1. The

IRF for Xi = 0 is shown in Fig. 4. The curve is the

one in Fig. 2 turned upside down! The equivalent

for a polytomous item will generalize this by adding

more curves to the figure and dividing the pro-

bability into more than two segments. Just as in the

dichotomous case, for any logit value, the sum of

the probabilities of all possible responses must

equal 1.

Thus, an equivalent of Fig. 4 for a polytomous

(in this case, five category) item is shown in Fig. 5.

Note that in this graph, the curves are cumulative

versions of the category response functions. That is,

what is shown is the cumulative probability of

being in successive score categories: first, being in

score category 0; then being in score categories

0 or 1; then being in score categories 0, 1 or 2; etc.

Note that the probability of a 0 response instead

of any other response is very high at the lower

end of the scale; that the probability of a 0 or 1

response rather than a 2, 3 or 4 response decreases

as you get higher on the logit scale and that the

probability of a response other than a 4 steadily

decreases, becoming close to 0 at the highest end

of the scale.
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Fig. 4. Item response function for 0 for an item with

endorsability of 1.0.
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AWright map for the polytomous item identifies

the critical points where these cumulative curves

intersect with the horizontal line where probability

equals 0.5, shown on Fig. 5. These points are

known as ‘Thurstone thresholds’: the kth Thurstone
threshold is the point at which the probability of the

scores below k is equal to the probability of the

scores k and above (and that probability is, of

course, 0.50). For example, the intersection of the

first curve with the straight line (s1) is the point at

which responses 1, 2, 3 and 4 together become

more likely than a response of 0; the intersection of

the second curve with the straight line (s2) is the

point at which responses of 2, 3 and 4 together

become more likely than responses 0 and 1

combined; the intersection of the third curve with

the straight line (s3) is the point at which responses

3 and 4 together become more likely than responses

0, 1 and 2 combined; etc. Note that, except in the

dichotomous case, the Thurstone thresholds, in

general, are NOT the item parameters di1, ..., di4
in Equations (5)–(8). Some people find this con-

fusing, but we have chosen this way to represent

the category response functions because it avoids

some complexities that arise in interpreting the dik
parameters due to the fact that they are defined

relative to pairs of categories (as above). Neverthe-

less, the relative locations of the Thurstone thresh-

olds are very useful for interpretive purposes (as

discussed below).

The SE scale example, continued

The same data analyzed in a dichotomous format

were also analyzed in their original format with 11

categories, and the resulting Wright map is shown

in Fig. 6. This map has the same general layout as

Fig. 3. In particular, note that the same types of

information are given on the left-hand side of the

map. But the right-hand side looks a bit more

complicated—and that is because the number of

categories has been restored to its original count.

Each item now has 10 Thurstone thresholds, one

between each pair of the ordered response catego-

ries. The first threshold for each item, governing the

transition from marking 0% to marking 10%

confident that the respondent could be effective

under that item’s adverse condition is depicted at

the bottom of the Wright map, being the easiest to

surpass. The 10th threshold for each item, govern-

ing the transition from being 90 to 100% confident

are shown at the top of the Wright map, being the

most difficult for respondents to choose.

There are a number of differences between Figs 3

and 6. Looking from left to right, there are now

more possible total raw scores and hence more bars

in the histogram of respondents’ locations (this is

because the categories are no longer collapsed for

recoding as 0 or 1). The shape of the respondent

distribution is different also. Figure 6 approximates

a normal curve when the same data are analyzed

polytomously. Note that the skewness, mentioned

above as being expected, but not observed in the

dichotomized data, is evident here.

Just as for Fig. 3, one can gauge the approximate

probability relationships between the items and

persons using the map itself. For example, at the

bottom of Fig. 6 the very lowest scoring respondents

have about a 0.50 probability of responding that they

are at or above ‘10% confident’ that they can be

effective under the adverse conditions in about half

of these items, but have a very tiny probability of

responding at ‘100% confidence’ for these items.

Going to the top end of the figure, the highest scoring

respondents have a 0.50 probability of responding

that they are at or above ‘90% confidence’ on Item
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Fig. 5. The cumulative category response functions for a

polytomous item.
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Fig. 6. Wright map of item thresholds for SE scale analyzed polytomously (each ‘X’ represents 3.7 cases).
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14 and an even higher probability of responding at

or above 90% confidence to the other items.

What one would do at this point in a standard

interpretation of the Wright map (e.g. see Wilson

[8]) would be to seek to interpret the meanings that

can be attached to portions of the construct, using

interpretations of the wording of items, and the

wording of the categories. In this case, it is clear

from the Wright map that the most important

characteristic differentiating higher from lower is

the set of response categories rather than the

specific items themselves. Unfortunately, the cate-

gories are nothing other than percentages: ‘0’, ‘10’,

etc., which gives almost no basis for meaningful

interpretation. Thus, by the nature of its response

options, the SE scale offers no worthwhile oppor-

tunity for interpretation of its internal structure.

The use of Wright maps such as those depicted in

Figs 3 and 6 aids one in interpreting the usefulness

of individual items, as well as the relative location

of each respondent. Knowing that an item is easy or

difficult to endorse for the population of respond-

ents in question can help in the evaluation of that

item and its usefulness in the instrument. Knowing

that a respondent is located toward the bottom or

the top of the construct can help in the evaluation

of that respondent’s perception of SE in the case of

the SE scale.

Interpretations and errors

Another aid to the interpretation of item and

respondent location is examination of the reliability,

using the standard error. Recall that each location is

an estimate. That means that it is subject to a degree

of uncertainty. This uncertainty is usually charac-

terized using the standard error of the location—the

so-called ‘standard error of measurement’. This

quantity, which is calculated by the software along

with the estimate, indicates how accurate each

estimate is. For example, if a respondent scored

10 on the dichotomous version of the SE scale (see

Table III), then the respondent’s location is 0.92

logits and the standard error of the respondent’s

location is 0.61. This is usually interpreted by

saying that the measurer is uncertain about the

exact location of the respondent, but that it is

centered approximately on 0.92 logits with a 95%

confidence interval ranging from �0.28 to 2.12 or

a raw score of 6–12 out of 14. This is a fairly wide

confidence interval, spanning a quite wide part of

the range of the instrument from its lowest score

location to the highest. This observation corre-

sponds to the fairly low reliability for the dichoto-

mized scale 0.78. Note that the reliability coefficient

being used here is one based on the logit metric

rather than the score metric as are the classical

reliabilities (KR-20, Cronbach–Guttman alpha, etc.),

but it is based on an analogous approach, and can

be interpreted in an analogous way [16]. Note that

researchers in behavioral sciences have typically

used a 0.70 reliability (i.e. Nunally and Bernstein

[17]) as a lower bound of acceptability.

The precision of the original polytomous scoring

of the SE scale was also computed. A respondent

who scored 106 on the SE scale (see Fig. 7) has a

logit score of 0.535 with a standard error of 0.165.

The 95% confidence interval is (0.214, 0.856), a

range of 0.64 logits, from just above a score of 91

to just below a score of 116. Although a 25-point

raw score range may seem wide for a 95% con-

fidence interval around a respondent’s raw score,

it is an improvement on the case for the dichotom-

ized data. For the polytomous data, the reliability

is a more respectable 0.92.

Figure 8 shows, for the polytomous data, how

the standard errors differ across the range of the

construct, reflecting the greater number of item

thresholds nearer the middle of the ability distribu-

tion, and fewer item thresholds at the extremes.

Because these standard errors vary depending on

the person’s location, these are also called condi-

tional standard errors of measurement. Sometimes,

this is displayed as the ‘Information’ of an in-

strument. The Information is the reciprocal of the

square of the standard error and is helpful in

investigating where the instrument measures most

precisely on the construct.

Similarly, the item locations also have a standard

error. In typical measurement situations, where

there are many more respondents than items, the

M. Wilson et al.

i14



item standard errors are quite a lot smaller than the

respondent standard errors. For example, the stan-

dard errors of the SE scale item estimates range

from 0.021 to 0.024. In many applications, the

item standard errors are small enough to ignore

when interpreting the item locations. However, it is

important to keep in mind that they are estimates

subject to error, just as are the respondent location

estimates. One situation that requires use of the item

standard error is the calculation of item fit statistics,

used in the assessment of the fit of a model.

Model fit

The gathering of evidence that the mathematical

models that are being used are appropriate is gen-

erally termed the investigation of ‘fit’—here it is

discussed with respect to items. There is more than

one approach to investigating fit—each approach

tends to emphasize one aspect of the model over the

other. In this section, the emphasis will be on con-

sideration of how well the shapes of the empirical

item characteristic curves are captured by the curves

generated by the estimated item parameters. Most fit

investigations begin by examining the residuals—

the difference between the observed score and the

expected score for a particular person and item:

Yin =Xin � Ein; ð9Þ

where Yin, Xin and Ein are the residual, the ob-

served score and the expected score for person n
responding to Item i, respectively. The expected

score is given by

Ein = +
Ki

k=1

kPðXin = kjh; diÞ; ð10Þ

6420-2-4-6

1.6

1.4

1.2

1.0

.8

.6

.4

.2

0.0

St
an

da
rd

 E
rro

r 

SE Scale (logits) 

Fig. 8. The standard error of measurement for the SE scale

(each circle represents a different score).

Fig. 7.AWright map for the polytomous SE scale, showing 67%

(1) and 95% (2) confidence intervals for a respondent with

a score of 106.
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where Ki is the number of response categories for

the item and di is a vector of the parameters for Item

i. While we do not expect every response of a

respondent to an item to have a small residual, we

do expect that the distribution of these residuals

across the instrument will meet certain standards,

falling within a particular range specified by the

measurer. Thus, fit indices usually consist of

various ways of looking at the distribution of the

residuals, their means and variances, etc.

For example, one way to detect differences from

what we expect is to compare how much the actual

residuals vary with how much they would vary

randomly if the data fit the model. This is just what

we do to calculate the so-called ‘mean square fit

statistic’ [8, 15]. When the observed residuals are

varying about as much as we expect the mean

square should fall within a particular range ;1.0.

When mean square values are >1.0, the observed

variance is greater than the expected—and that can

be interpreted as implying that the IRF slope

indicated by the data is flatter than expected.

When mean square values are <1.0, then the

observed variance is less than the expected—and

that can be interpreted as saying that the IRF slope

indicated by the data is steeper than expected. In

considering the interpretation of these results, note

that items with a mean square >1 will be those that

contribute less toward the overall estimation of the

latent variable, and hence those that lie outside the

specified range are the ones that are most problem-

atical for measuring and should be attended to first.

Items with a mean square <1 and outside the

specified range are also problematical for measur-

ing; lower variance means responses were less

random than predicted. However, after the items

above the upper limit have been deleted, and the

item set recalibrated, it is often the case that some, if

not all of the items that were below the lower limit

are no longer in that critical region. There are

several ways to create fit indices like this—the one

shown above is often termed the ‘weighted’ mean

square or sometimes the ‘infit’ mean square because

the calculation corrects for occasional outliers that

may affect the ‘outfit’ mean square.

As an effect size, there is no absolute criterion for

what is a desirable range to specify for a weighted

mean square value, but 0.75 (=3/4) is a reasonable

lower bound and 1.33 (=4/3) is a reasonable upper

bound [18]. A second fit index, the weighted t, uses
a transformation that attempts to make the weighted

mean square into a standard normal distribution

[15], and is sometimes used to test the statistical

significance of the mean square [15]. But, with

large sample sizes, one can expect that this t statistic
will show significant values for many items; hence,

a safer strategy is to consider as problematical only

those items that show as misfitting on both the mean

square and the t statistics.
With this background, now look at Fig. 9 [18],

which shows the weighted mean square for the

average item locations for the SE scale data. The

weighted mean square indicates that all of the items

are fitting within reasonable bounds, with respect to

Fig. 9. Fit results for the SE scale data (weighted mean square for average item location).
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the estimated average locations, although Item 7 is

near the border with an infit mean square of 1.32. If

we had looked at just the weighted t statistics, three
of the 14 items would have looked out of bounds,

i.e. the t statistics for three of these average location
parameters are significant at the a = 0.05 level, but

recall, from above, that is not sufficient. We would

be interested in items where both the mean square

and the t indicate problems, and none of the items

qualify. For the relative step parameters, only two

t statistics are significant, and none of the mean

squares is out of bounds. Thus, the overall finding is

that the SE scale data fit the polytomous model

reasonably well. If both the mean square and the t
indicated problems, users of the scale should

examine the specific items or steps to determine

whether they should be revised, replaced, deleted or

considered along a separate construct [8].

Conclusion

As the first in a series of papers utilizing BCC data

to illustrate the use of IRM analysis, this paper

introduces the basic elements of IRM. Data from

the SE scale for exercise were analyzed using both

dichotomous and polytomous models. The item

response model analysis shows that the polytomous

items seem to cover the content well, and provide

reliable information about both the items and the

respondents along the construct of SE for exercise.

This information about the items and the respond-

ents in this data set provides a foundation for

determining the usefulness of the SE scale in

measuring SE and thus offers a basis for interpret-

ing validity evidence for this instrument as an

assessment of behavioral measures in the BCC

studies. A later paper will compare these findings

with those from an analysis using the CTT, and

appraise evidence for reliability and validity.
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