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Abstract

This paper compares the approach and resul-
tant outcomes of item response models (IRMs)
and classical test theory (CTT). First, it reviews
basic ideas of CTT, and compares them to the
ideas about using IRMs introduced in an earlier
paper. It then applies a comparison scheme
based on the AERA/APA/NCME ‘Standards
for Educational and Psychological Tests’ to
compare the two approaches under three gen-
eral headings: (i) choosing a model; (ii) evi-
dence for reliability—incorporating reliability
coefficients and measurement error—and (iii)
evidence for validity—including evidence based
on instrument content, response processes, in-
ternal structure, other variables and conse-
quences. An example analysis of a self-efficacy
(SE) scale for exercise is used to illustrate these
comparisons. The investigation found that there
were (i) aspects of the techniques and outcomes
that were similar between the two approaches,
(ii) aspects where the item response modeling
approach contributes to instrument construc-
tion and evaluation beyond the classical ap-
proach and (iii) aspects of the analysis where
the measurement models had little to do with
the analysis or outcomes. There were no aspects
where the classical approach contributed to

instrument construction or evaluation beyond
what could be done with the IRM approach.
Finally, properties of the SE scale are summa-
rized and recommendations made.

Introduction

Item response models (IRMs) underlie many of

the advances in contemporary measurement of the

behavioral sciences, including assessment of the

information provided by a particular item, criterion

referenced assessment, computerized adaptive test-

ing and item banking. Making full use of such

advances requires knowledge of IRM that few yet

possess. Comparison with the more well-known

procedures associated with classical test theory

(CTT) should help to situate new concepts of IRM

and understand how each approach might con-

tribute to measurement. In this paper, an analysis

is conducted of a self-efficacy (SE) scale for ex-

ercise comparing IRM and CTT to illustrate the

differences and similarities between these ap-

proaches. First, some basic ideas of the CTT

approach are reviewed, to compare with the IRM

ideas introduced in another paper in this volume

[1]. A comparison scheme is described based on

the AERA/APA/NCME ‘Standards for Educa-

tional and Psychological Tests’ [2] and used to

compare the two approaches under three general

headings: (i) choosing a model, (ii) evidence for

reliability and (iii) evidence for validity. The

paper comments on the characteristics of the

validity evidence that seem to be presented for

instruments like the SE scale. Finally, the paper
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ends with a summary of the recommendations one

might make for the SE scale following the item

response modeling approach.

Basic differences between IRM and CTT

Both IRM and CTT are used to (i) help develop

instruments and (ii) check on their reliability and

validity. The CTT approach is by far the most

widely known measurement approach, and, in

many areas, is the most widely used for instrument

development and quality control. In the classical

approach, a particular instrument establishes its

respondents’ ‘amount’ of a particular characteristic

(i.e. ability or attitude in educational tests or

psychological instruments) based on their raw score

across all the items on the instrument. Instrument

developers using the classical approach assume that

the observed score (X) obtained is composed of the

true score (T), representing the true assessment of

this characteristic on this particular instrument,

plus an overall error (E) [3]:

X = T +E:

In theory, the error or noise represents the variabil-

ity if each respondent took the instrument many

times without remembering previous trials or

changing in the characteristic measured [4, 5].

The X and T are both indicators of the interaction

between the instrument and the respondents’ char-

acteristic; neither presumes to indicate an amount of

characteristic directly. The difficulty of the in-

strument depends on the amount of the character-

istic of the respondents who take it, while the

amount of the characteristic of the respondents is

assessed by their performance on the instrument

[6]. The inherent confounding between instrument

and sample makes comparisons between different

instruments related to the same characteristic and

between groups of respondents having different

amounts of that characteristic a challenge, although,

if we stick to just one instrument form, then the situ-

ation is not so complex. In addition, treating the raw

scores as if they were linear measures with the same

standard error throughout their range biases statis-

tical methods based on that assumption [7].

In contrast, IRM uses item responses to create

a linear (logit) scale that represents ‘less’ to ‘more’

of a characteristic or latent variable like a particular

ability, trait or attitude, to name a few possibilities.

Because of this linearity, the relationship between

respondent location and item location on the scale

of that latent variable can be compared directly [7].

[We assume that the reader has already read an

introduction to item response modeling, such as in

Wilson et al. [1, 8] (this volume), or is otherwise

familiar with it.] The location of an item is modeled

to be independent of the locations of the respond-

ents in the sense that any respondent in the group, at

any location, has an estimated probability of

endorsing that item. Item responses on instruments

are used to estimate item locations and standard

errors and respondent locations and standard errors.

The advantage of locating items on the same scale

as respondents is not cost free: IRM requires that

items perform in ways that conform to certain

assumptions (i.e. they must have reasonably good

‘fit’). The resulting scale can be interpreted as

indicating the probability that a particular respon-

dent with a particular estimated location will

endorse a given item. With these conceptual differ-

ences in mind, a more direct comparison of the

standard methods used in the classical approach and

item response modeling becomes possible.

In a classical analysis, the investigator uses raw

scores to compute statistics such as means, varian-

ces, reliability coefficients, item discrimination

measures, point-biserial statistics for item catego-

ries, total scores and errors of measurement for the

instrument as a whole. In an item response analysis,

the investigator uses raw scores to estimate item

and respondent locations plus all standard errors.

These parameters can be used to calculate the

equivalent of the statistics mentioned from classical

analysis, as well as additional ones such as the

variation in standard errors and thus, the informa-

tion available across the range of the latent variable.

The focus on items in the item response analysis

also allows a more extensive assessment of the

functioning of response choices within items—the

item categories—and the coverage of content

the instrument is supposed to measure.
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The data and instrument

A specific instrument and data set will be used to

illustrate the similarities and differences between

the two approaches. The data were provided by the

Behavior Change Consortium (BCC) [9], which

collected data from 15 different projects explicitly

studying major theoretical approaches to behavior

change and the interventions related to them. The

different projects investigated mediators (or mech-

anisms) of behavioral change interventions directed

at tobacco use, sedentary lifestyle and poor diet. A

common hypothesized mediator for change in

many of the studies was self-efficacy. Our analyses

included only baseline data regarding self-efficacy;

no post-intervention data from the BCC were

included for this paper.

Self-efficacy is defined as ‘a specific belief in

one’s ability to perform a particular behavior’ [10,

p. 396]. One instrument developed to measure self-

efficacy for exercise, the SE scale, consists of 14

items that express the certainty the respondent has

that he or she could exercise under various adverse

conditions (see Table I). Items reflect ‘potentially

conflictual situations’ based on ‘information gained

from previous research with similar populations in

which relapse situations had been identified’ [10, p.

401]. Respondents rate each item 0, 10, 20, 30 and

on up to 100% in 10% increments (resulting in 11

categories of responses) from 0% indicating ‘I

cannot do it at all’ to 100% indicating ‘certain

that I can do it’. The instrument authors used

summary scores that averaged the responses across

items if at least 13 items were completed [10].

Two of the projects used the same SE scale for

exercise [10] to assess the amount of self-efficacy

subjects said they had, and related that to changes in

the dependent variables surrounding exercise pro-

gram persistence. Investigators for both projects

postulated self-efficacy as a hypothesized mediat-

ing variable, speculating that people who felt confi-

dent that they could maintain an exercise program

through various adverse conditions would be more

likely to reap the health benefits of increased

physical activity [11].

The original article describing the SE scale [10]

reported a typical summary of the information from

a CTT analysis: the total score at baseline averaged

74.3% confident with a standard deviation of 16.72.

The internal consistency of the scale was 0.90, and

the test–retest correlation was 0.67 (n = 62, p <

0.001), although the time period between tests was

not explicitly stated. Baseline SE scale scores were

positively correlated with adherence to an exercise

program in both the first and last 6-month periods

during the 1-year assessment (r = 0.42 and 0.44,

respectively), and added significantly to the model

of adherence in a multiple regression analysis in

which self-motivation was insignificant [10].

Note that the wording of certain items (Items 6

and 13) for data gathering in one project used

‘exercise’ in the text (this is what is shown in Table

I), as opposed to the term ‘physically active’ which

was used in the gathering of data in the second

project. For the purposes of this paper, we assumed

that this word change did not affect the results.

The classical and item response analyses for this

paper were performed using the software package

ConQuest [12]. The majority of the item response

analyses was described in another paper in this

volume [1]. Any extensions are described when

Table I. SE scale for exercise

Item number Items: ‘I could exercise ...’

1 ... when tired

2 ... when feeling anxious

3 ... when feeling depressed

4 ... during bad weather

5 ... during or following a personal crisis

6 ... when slightly sore from the last time I

exercised

7 ... when on vacation

8 ... when there are competing interests (like

my favorite TV show)

9 ... when I have a lot of work to do

10 ... when I haven’t reached my exercise goals

11 ... when I don’t receive support from family

or friends

12 ... following complete recovery from an

illness which has caused me to stop

exercising for a week or longer

13 ... when I have no one to exercise with

14 ... when my schedule is hectic

Comparison of IRM with the classical test theory approach
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they are discussed below. The classical analyses are

quite standard, and are no different from those

outlined in a standard text such as that of Cronbach

[4]. Details necessary for interpreting the results are

discussed below.

Results: comparing analyses

The scheme for comparing the two approaches

utilizes psychometric concepts of model fit and

common aspects of reliability and validity to

perform a parallel assessment of the SE scale. The

particular aspects of reliability and validity in-

corporated are based on the terminology and

scheme proposed in the latest edition of Standards

for Educational and Psychological Tests [2]. The

scheme has been described in detail byWilson [13]:

(i) choosing a model [13, Chapter 6]

(ii) evidence for reliability and measurement error

[13, Chapter 7]

(iii) evidence for validity [13, Chapter 8],

including

(a) evidence based on instrument content,

(b) evidence based on response processes,

(c) evidence based on internal structure,

(d) evidence based on other variables and

(e) evidence based on the consequences of

using a particular instrument.

Commonly used alternative terms for (a) through

(e) include content validity, evidence based on

cognitive interviews or think alouds, construct

validity, external or criterion validity and conse-

quential validity. The results of the comparisons are

summarized in Table II.

Choosing a model

The classical true score model, X = T + E, is not one
that can be formally rejected since it is one equation

with two unknowns. Hence, there is no step of

‘model choice’ in the classical approach. To

Table II. Standards framework for comparing the two approaches

Comparison framework CTT approach Item response modeling approach

Choosing a model The same model is

always ‘chosen’

‘Fit’ of persons and items to specific model can be

calculated and evaluated—may be informative

X = T + E Alternative models can be compared, to explore

measurement implications

Evidence for reliability

Reliability coefficients Cronbach’s a = 0.91 MML reliability = 0.92

Standard error of measurement Constant value = 7.66 Varies by raw score, see Fig. 2

Will be important when the shape of the curve has

measurement consequences (see text for examples)

Evidence for validity

Based on instrument content No contribution Modeling item endorsability may influence choice of

items and response categories to span the range of

levels needed to cover content

Based on response processes Not relevant Not relevant (yet)

Based on internal structure No equivalent to Wright map Wright maps provide a basic tool

Item discrimination index and

point-biserial correlation can be

used for item analysis

Mean for respondents in each category can be used

for item analysis

DIF not available in CTT

(although it could be addressed

using other methods)

DIF can be addressed directly as an item parameter

Based on other variables Same Same

Based on the consequences of

using an instrument

Same Same
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illustrate the steps one would take to choose a mo-

del in the case of the IRM approach; one can

first examine the section of Wilson et al. [1] labeled
‘fit statistics’, where the fit of both items and

persons to the partial credit model was examined

for the SE scale. The details of that will not be

repeated here, but, in summary, note that (i) all the
items appeared to be fitting reasonably well and (ii)

the information about person fit can be used to flag

individuals for whom an estimated location was

perhaps not sufficient to convey an adequate

summary of their full set of responses. Note that

in the classical context, no results address how well

the items are represented, partly, at least, because

formally there are no items in the CTT model itself.

Of course, under the rubric of ‘item analysis’,

several characteristics of items are indeed exam-

ined, and one could argue that these constitute a sort

of ‘model fit’ (more on this later).

Finding evidence for misfitting items can help

the instrument designer understand the essential

nature of the set of items (e.g. lack of unidimen-

sionality) that are defining a latent variable.

Misfitting respondents can alert the measurer to

alternative points of view or response styles that

were not considered in the design of the original

instrument. A different type of fit issue can be

addressed by asking if an alternative model would

have done a better job. For example, the partial

credit model (used above) allows each item to have

a different pattern of relative differences in endors-

ability when making the transition from one

category to the next (the ‘item step parameters’ as

defined in Wilson et al. [1]). A more parsimonious

model, called the ‘rating scale model’ [14], allows

each item to differ in its overall endorsability, but

constrains the relative endorsability of the steps to

be the same across all the items. Some researchers

find that this is a reasonable model to consider as an

alternative as the labels of the response alternatives

for the SE scale items are identical across items

[14]. The different item stems may not interact with

the way the respondents interpret the percentages,

hence, one might expect that the parameters that

govern the relative endorsability of, say, 80 versus

90% might be approximately equal across items.

Two ways to examine the difference in fit of the two

models are (i) to compare them using a likelihood

ratio test (possible because the rating scale model

is a constrained version of the partial credit model)

and/or (ii) to compare them using the same fit

indices as were used in the previous paragraph. The

likelihood ratio test can be calculated by finding

the difference between the deviances (i.e. twice the

loglikelihood) for the two models (provided by the

ConQuest computer program). In this case, it turns

out to be 336.23 (df = 117), and when this is

compared with the critical value for a v2 distribu-

tion at a = 0.0001 (which is 182.61), we can see that

the difference is indeed highly statistically signif-

icant. The same conclusion is drawn upon noting

that the fit statistics for the step parameters, which

were found to be innocuous for the partial credit

model, are all above the usual maximum for the

rating scale model. The effect size for this can be

gauged by looking at the pattern of thresholds in

a graph showing the locations of respondents and

item thresholds, the Wright map shown in Fig. 1

(this was introduced in Wilson et al. [1]). Note that
there are considerable differences in the relative

location of the thresholds across items—e.g. be-

tween Thresholds 9 and 10 in the columns for Items

1 and 13. These differences could imply quite

considerable interpretational differences between

scales resulting from the two models. Hence, we

can conclude that the use of a uniform set of options

(‘10%’, ‘20%’, etc.) for the SE scale has not

resulted in a uniform pattern of responses from

the respondents.

Evidence for reliability

The consistency with which respondents are mea-

sured is commonly reported in two ways: (i) using

a reliability coefficient, which attempts to give an

overall indication of how consistent the respond-

ents’ responses are and (ii) the standard error of

measurement, which attempts to indicate the amount

of variation one might expect, given a certain

pattern of responses across the items. Under the

classical approach, the internal consistency reli-

ability coefficient most commonly used for poly-

tomous data is Cronbach’s a [4]. In this case, it

Comparison of IRM with the classical test theory approach
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Fig. 1. Wright map of item thresholds for SE scale analyzed polytomously (each ‘X’ represents 3.7 cases).
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was calculated to be 0.91. For the item response

approach, an equivalent coefficient can be calcu-

lated as a by-product of the marginal maximum

likelihood (MML) estimation algorithm, and turns

out in this case to be a very similar 0.92. This

reliability value can be used to predict the effect

on reliability of reducing or increasing the number

of items using the Spearman–Brown formula [4].

For the SE scale, starting from r = 0.92, the reli-

ability would be predicted to be reduced to 0.91

by deleting one item, to 0.89 by using only 10

items and down to 0.85 using just half the items.

The classical standard error of measurement is

calculated as a function of the reliability coefficient

and the standard deviation of the raw scores. It is,

by assumption, a constant, not varying for different

scores. In this case, it turns out to be 7.66 (in raw

score units). In the item response modeling ap-

proach, the relationship between the estimated

location and the standard error of measurement is

not a constant, but varies with the location of the

respondent (thus it is also called the ‘conditional’

standard error of measurement). This relationship

results from the proximity of the respondent’s

location and the item parameters (usually, there

are more item parameters estimated toward the

middle, hence, the relationship is usually ‘U’-

shaped). The specific relationship for the SE scale

data is shown in Fig. 2. Because of the non-linear

relationship between the raw score metric and the

logit metric, it is not straightforward to compare the

values of these two standard errors of measurement.

Of greater import is the shape of the relationship

between the standard error of measurement and

location, which can be informative in different

measurement contexts. For example, if the tails

lift too high, then that might indicate that meas-

urements at the extremes are to be treated with

caution. Or, if one is using a cut score, then the

relationship could be used to examine whether the

particular set of items used was an optimal set

(i.e. by examining how close the minimum point is

to the cut). Of course, if the non-linearity of the

relationship is important, as it is in these two

instances, then the linearity assumption of the

classical approach is a drawback.

Evidence for validity

Note that the structure of the discussion about

validity below is based on the 1999 Standards for

Educational and Psychological Testing [2]. These

differ quite markedly from the structures presented

in earlier editions of the ‘Standards’. Those more

familiar with the older categories may wish to

update their knowledge before reading further.

Evidence based on instrument content

It is quite possible to develop an instrument’s

content in the same way regardless of the potential

application of either a classical or an item response

modeling approach. The intent is to formulate items

that ‘cover’ all areas of the content of interest, and,

in the CTT approach, is frequently performed by

topic area or other subdivision. However, to do so is

to ignore one of the major advantages of item

response modeling. The focus of item response

modeling on ‘the item’ gives a direct connection

between the meaning of the item content and

the location of the item on the latent variable. The

Wright map illustrates the connection between the

latent variable and item and respondent locations,

enabling a very rich repertoire of interpretations

of the relative locations of respondents and items

(see Wilson et al. [1] for more on this).

The SE scale is a negative example of this

criterion—the scale is dominated by the response

categories rather than the items (as is clearly shown

Fig. 2. The standard error of measurement for the SE scale

(each dot represents a different score).

Comparison of IRM with the classical test theory approach
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in Fig. 1). The categories, ‘0%’, ‘10%’, etc., like

many merely numbered categories, are not condu-

cive to meaningful interpretation. Effectively, the

respondent is left to intuit what relative differences

in ‘10% of self-efficacy’ might be and respond

accordingly. That thinness of interpretational pos-

sibilities limits the possibilities for the user to

interpret the results, and also limits the possibilities

for someone gathering internal validity evidence

(made evident in a later section).

In contrast, there is a strong tradition of instru-

ments being designed with the intent of building in

strong content, and matching that content with

features of a measurement model. This dates back

to the work of Guttman [15], and has reached

prominence in the work of Wright et al. (e.g. [16,
17]). A recent account that builds on this work [13]

shows multiple examples of such content structures

(called ‘construct maps’) in which the relative

behaviors of a generic respondent having various

amounts of the construct are arranged in order on

one side, and potential items are arranged in order

of endorsability on the other.

Evidence for validity based on response
processes

Evidence based on the response process consists of

studies of how respondents react to the items and

the instrument as a whole. These might consist of

‘think alouds’, ‘exit interviews’ or ‘cognitive inter-

views’ with samples of respondents. To date, there

have been no studies that explicitly relate this type

of evidence with the features of measurement

models, and such evidence was not available with

our secondary analysis of the baseline SE scale

data, so this aspect of the framework is not relevant

to our comparison at this time. It is possible that this

connection may be made in the future, however.

Evidence based on internal structure

One major criterion for internal or construct validity

is an a priori theoretically based hypothesis about

the order of item endorsability, the ease with which

respondents rate items strongly. A very useful tool

for investigating this is the Wright map (discussed

in Wilson et al. [1]; also see Wilson [13], Chapter

6). As mentioned above, in the case of the SE scale,

no such expectations were developed. Hence, this

source of validity evidence is not available. Even if

there were, the Wright map shown in Fig. 1

demonstrates that there is no discernible empirical

order to the items of the SE scale. Instead, the

feature of the SE scale items that maps out the SE

scale variable is the transitions between the cate-

gories. Unfortunately, the labels chosen for these

categories, 10%, 20%, etc., are not interpretable.

The one thing you might expect would be that the

categories line up across the page, but that is clearly

not the case here, other than for the extreme

categories. For examples of cases where the Wright

map has been used successfully as a support for

internal validity, see Wilson [13].

The Wright map is useful for a number of other

purposes, as well. For example, one generic threat

to the usefulness of an instrument is a mismatch

between the locations of the items and the respond-

ents on this map. Examination of the Wright map

for the SE scale shows that the instrument is free

from certain types of problems that sometimes

occur in instrument development: (i) there are no

significant gaps in the locations of the item thresh-

olds and (ii) the range of the item parameter

locations matches quite well the spread of the

respondent locations. For illustrations of what these

problems look like on a Wright map, and what

it means for the instrument, see Wilson [13].

Other evidence that the items are operating as

intended is available in somewhat different forms

from both the classical and item response modeling

approaches. An important piece of evidence that an

item is functioning as expected is that the increasing

response levels of the item are operating consis-

tently with the instrument as a whole. The CTT

indicator of this at the item level is the item

discrimination index (Table III). The CTT indicator

at the category level is the point-biserial correlation

between the respondent’s choice of that category

and the raw score. As the categories increase from

lowest to highest, if they are working well, then one

would expect these correlations to increase from

negative to positive. Where they do not, that is

M. Wilson et al.
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evidence that the successive categories are not

working as they should. Table III shows the

point-biserial correlations for the SE scale data.

Although the discrimination indexes seem to in-

dicate that the items are all acting quite well, there

are numerous cases where the expected order is not

observed (cases where the right-hand values are less

than the left-hand values are shown in bold in the

table). In particular, there appears to be some fairly

consistent problem between the first and second

categories. However, this seems inconsistent with

the information provided by the item discrimination

index, and may be due to problems in interpreting

correlation coefficients in small or restricted

samples.

The analogous information for the item response

modeling approach is shown in Table IV: these are

the means of the locations of the respondents in

each category. As can be seen in Table IV, there are

far fewer instances where the order is other than

expected, and given the small number of cases in

some of the categories (especially at the extremes),

these instances can be largely ignored. The mean is

an inherently simpler index than the correlation

coefficient, and may be giving a clearer picture

in this case [13].

One of the fundamental assumptions of IRMs

is that the item response function (IRF) (discussed

in Wilson et al. [1]) is invariant throughout the

population being measured. If the IRF differs

according to which subgroup a respondent is in,

then that is referred to as ‘differential item func-

tioning’ (DIF). The most common way to think

about this is that an item would be ‘harder’ for

similar people from one group than from another.

(i.e. harder to endorse at a higher level, etc.). DIF

does not require that the subgroups differ in their

mean scale locations. When subgroups have differ-

ent mean scale locations on the latent variable, this

is commonly referred to as ‘differential impact’.

There are several ways to investigate DIF under an

item response modeling approach. One approach

that is particularly straightforward is to add an item

by group interaction parameter, cig into the un-

derlying relationship. Thus, the IRF without DIF is

given as in Equation 1,

Probability ðXi = 1jh, diÞ=
e
ðh�diÞ

1 + e
ðh�diÞ , ð1Þ

where h is the person estimate and di is the

item endorsability parameter. Then the relationship

Table III. Item point-biserial correlations and item discrimination (disc.) for the SE scale

Item Item disc. Point-biserial correlation for each category

0 10 20 30 40 50 60 70 80 90 100

1 0.59 �0.31 �0.26 �0.17 �0.17 �0.06 0.04 0.14 0.21 0.29 0.21 0.06

2 0.75 �0.30 �0.36 �0.17 �0.17 �0.22 �0.08 0.03 0.17 0.25 0.30 0.36

3 0.75 �0.32 �0.38 �0.16 �0.17 �0.15 0.00 0.07 0.24 0.27 0.26 0.33

4 0.67 �0.30 �0.32 �0.19 �0.10 �0.07 �0.10 0.00 0.13 0.23 0.28 0.30

5 0.67 �0.29 �0.28 �0.19 �0.16 �0.13 0.01 0.09 0.22 0.26 0.24 0.26

6 0.71 �0.27 �0.29 �0.22 �0.26 �0.15 �0.12 �0.01 0.12 0.24 0.32 0.30

7 0.55 �0.16 �0.27 �0.16 �0.18 �0.17 �0.01 0.13 0.05 0.20 0.21 0.24

8 0.73 �0.34 �0.29 �0.21 �0.18 �0.19 �0.05 0.01 0.13 0.26 0.32 0.33

9 0.65 �0.35 �0.27 �0.17 �0.12 �0.08 0.09 0.15 0.17 0.23 0.24 0.24

10 0.71 �0.30 �0.33 �0.13 �0.24 �0.17 �0.14 �0.05 0.16 0.22 0.29 0.34

11 0.71 �0.31 �0.33 �0.17 �0.20 �0.16 �0.15 �0.03 0.08 0.27 0.26 0.35

12 0.68 �0.29 �0.33 �0.18 �0.21 �0.12 �0.08 0.06 0.15 0.29 0.22 0.26

13 0.67 �0.29 �0.28 �0.22 �0.25 �0.16 �0.11 �0.07 0.09 0.23 0.26 0.35

14 0.70 �0.33 �0.31 �0.19 �0.19 �0.07 0.07 0.16 0.19 0.32 0.23 0.20

Values that appear to be out of increasing order from left to right for any item are shown in bold.
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incorporating the DIF effect is expressed in

Equation 2:

Probability ðXi = 1jh, di, cigÞ=
e
ðh�di þ cigÞ

1 + e
ðh�di þ cigÞ

: ð2Þ

Gender was chosen to illustrate IRM analysis of

DIF because it is binary and thus simpler than age

or race, for example. Estimates of the item by

gender interactions provided by the ConQuest

software [12] for the SE scale, along with their

standard errors, are shown in Table V. Calculation

of the approximate 95% confidence intervals for

these interaction effects using the usual formula

(estimate plus or minus 1.96 times the standard

error) shows that all the confidence intervals con-

tain zero, and an omnibus test of parameter equality

gives a v2 statistic of 13.021, on 14 df (p = 0.525).

Thus, the SE scale did not display any statistically

significant DIF with respect to gender in this

sample. Examples where DIF has been found to

be important, and the implications of this for the

instrument, are discussed in Wilson [13].

The discussion of how an issue like DIF can

be incorporated directly into the IRM is intended as

an illustration of one of the general strengths of

this approach: IRMs can be expanded to investigate

theoretical and measurement complexities. In con-

trast, investigation of DIF is not available through

any of the standard statistics of the classical

approach. While one could use an additional tech-

nique, such as logistic regression using the raw

scores, to look for evidence of DIF, it would not

link directly to the CTT approach (as it does not

utilize the standard error of measurement in the

Table IV. Means of SE scale locations for respondents selecting each category

Item Mean respondent location for each category

0 10 20 30 40 50 60 70 80 90 100

1 �1.03 �0.40 �0.27 �0.20 �0.09 0.03 0.20 0.28 0.38 0.62 0.74

2 �1.75 �0.44 �0.40 �0.29 �0.29 �0.10 0.00 0.16 0.24 0.48 1.37

3 �1.14 �0.49 �0.31 �0.22 �0.19 �0.02 0.07 0.25 0.30 0.49 1.59

4 �1.18 �0.39 �0.39 �0.17 �0.10 �0.12 �0.02 0.17 0.23 0.43 0.90

5 �1.07 �0.40 �0.29 �0.22 �0.14 0.00 0.09 0.25 0.37 0.50 1.72

6 �2.53 �0.42 �0.57 �0.45 �0.22 �0.14 �0.04 0.11 0.20 0.50 1.22

7 �1.52 �0.39 �0.38 �0.23 �0.24 �0.01 0.16 0.04 0.27 0.29 0.92

8 �1.77 �0.37 �0.41 �0.27 �0.25 �0.06 �0.02 0.12 0.25 0.49 1.17

9 �1.11 �0.35 �0.22 �0.17 �0.11 0.07 0.17 0.24 0.43 0.52 2.24

10 �3.53 �0.44 �0.36 �0.40 �0.25 �0.15 �0.08 0.15 0.18 0.38 1.33

11 �2.34 �0.38 �0.49 �0.36 �0.23 �0.17 �0.07 0.06 0.25 0.31 0.92

12 �2.09 �0.45 �0.35 �0.30 �0.16 �0.10 0.07 0.17 0.29 0.32 1.04

13 �3.01 �0.30 �0.56 �0.37 �0.28 �0.16 �0.12 0.09 0.21 0.31 0.73

14 �1.32 �0.41 �0.24 �0.25 �0.11 0.03 0.17 0.28 0.52 0.63 2.46

Values that appear to be out of increasing order from left to right are shown in bold.

Table V. Estimates and standard errors for DIF parameters

indicating gender–item interaction from IRM analysis of the

SE scale (n = 504, female = 394)

Item Estimate Standard error

1 0.003 0.022

2 �0.007 0.022

3 0.002 0.022

4 �0.001 0.022

5 0.018 0.022

6 0.026 0.023

7 �0.039 0.022

8 �0.024 0.022

9 0.043 0.022

10 �0.037 0.023

11 0.001 0.023

12 0.002 0.022

13 0.006 0.023

14 0.006 0.022

No estimate is statistically significant.
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analysis). Other DIF possibilities arising out of the

origins of the CTT approach include structural

equation modeling (SEM) and factor analysis to

see if responses differ by subgroup.

Evidence based on other variables

Commonly called ‘external validity’, this form of

evidence is examined in a similar way in both

approaches by comparing respondents’ measures

on the instrument of interest with their behavior or

responses to other instruments. There is quite a long

list of validity studies available for different ver-

sions of the SE scale, many of these have provided

evidence for the relationship of the SE scale with

physical activity behavior [18] or assessed its ability

to predict change in physical activity behavior [19–

27]. In the item response modeling approach, this

would be carried out in a very similar manner,

differing only in that it would use respondent

location instead of total score for comparison.

Evidence based on consequences of
using an instrument

The final form of validity evidence relates to

consequences. In some senses, this is the most

important type of evidence. For example, if the use

of an instrument was to differentiate accurately

between groups of people who would respond well

to intervention, but its inaccuracy in differentiating led

to false exclusion or inclusion of large numbers of

people, then the instrument can hardly be said to be

successful, nomatter what the other forms of evidence

say. However, as with the previous form of validity

evidence, there are no major differences in how it

would be investigated under the two approaches.

Discussion

This paper has addressed several important points

in the comparison of the CTT and IRM approaches

to measurement. There were a number of ways in

which the CTT and IRM approaches were consis-

tent in the sorts of issues that they addressed and the

results they obtained. For example, the CTT

concepts of reliability and standard error of

measurement have equivalents in the IRM approach.

The reliability for the SE scale was found to be

similar under both approaches. The standard error

of measurement was expressed in different metrics

under the two approaches, but the reliability

indicates that they were effectively not very

different. Another example of method concordance

is evidence concerning external variables. Both

approaches use correlations between criterion var-

iables and either the raw score or the respondent

locations. There are ways in which the item

response modeling approach can be extended in

order to estimate better the underlying relationship

using multilevel extensions of the IRMs [28], but,

at a conceptual level, the operations are basically

the same.

There were some interesting and important

differences between the two approaches, with

IRM generally extending the CTT approach. For

example, the concept of model fit is not available

with the classical X = T + E. Although this

simplifies the application of the classical approach,

it is also an important limitation, depriving the

analyst of the creative power of model building. A

second important feature in the IRM approach is the

common scale for respondents and items, embodied

in the Wright map. This gives an immediacy of

interpretation that allows non-technical intuitions

constructively to inform instrument development

and interpretation. For example, if the IRM ap-

proach had been used in the development of the SE

scale, an interpretational perspective might have

been developed that would make the process of

interpreting results from the SE scale a more

intuitive and useful exercise.

By designing instruments according to the ideas

of criterion referencing as pioneered by Wright [7],

the unique properties of the Rasch model can be

used to help build rich interpretations into mea-

surement. For example, response categories that

lend themselves to greater interpretation could help

researchers to understand what aspects of self-

efficacy are easy to endorse, and which can be

endorsed only by those who have a great deal of

confidence in their ability to overcome obstacles to

exercising. Looking in more detail into the standard
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error of measurement, the fact that the error varies

across the construct, as revealed in the IRM

approach, indicates that there can be important

differences in how the two approaches deal with

reliability. For example, those who have very high

or very low self-efficacy have higher standard

errors of measurement, so any interpretation of

association between these scores and behavioral

change should be somewhat more suspect.

There are important aspects of validity evidence

that are not different between the approaches. For

example, evidence based on external variables,

evidence based on response processes and evidence

based on consequences are all areas where the

specific measurement approach adopted is not

markedly important to the use of such evidence.

Finally, the evidence that is usually gathered in

studies of instrument validity in the area of health

outcomes research does not address all aspects of

validity proposed in the accepted Standards [2].

This is particularly noticeable for evidence based on

response processes and evidence based on conse-

quences. Neither the original reports on the in-

strument nor the BCC data include these types of

evidence (although, regarding the latter, such

evidence would not contribute much to a compari-

son of the two approaches).

Perhaps the most important difference between

the CTT and the IRM approaches is the DIF. DIF

detection is essentially absent from the classical

approach, partly at least, because items themselves

are not a formal part of CTT. A measurer may use

SEM or factor analysis for ways to determine DIF,

but direct assessment of a DIF parameter is readily

available within the IRM approach. Thus, the item

response modeling approach can do all that you can
do in the classical approach when it comes to

assessing items and instruments, and it can do a

great deal ‘more’.

There could be ways to extend the classical

approach to achieve many, perhaps even most, of

the possibilities of item response modeling. In fact,

many of the techniques that are the bread and butter

of large-scale analysis using IRMs (such as, say,

different equating techniques) are available in one

form or another in extensions of the standard

classical approach. One example is generalizability

theory, which can offer many useful insights—

unfortunately, this and many other topics such as

computerized adaptive testing are beyond the scope

of an introductory paper. But the problem is that

each of these extensions involves a unique set of

extra assumptions that pertain only to that exten-

sion. The advantage of the item response modeling

approach is its ability to be extended to incorporate

new features of the measurement situation into the

model, features such as extra ‘facets’ of measure-

ment (like raters), extra dimensions (e.g. behavior

as well as attitude) or higher-level units of obser-

vations (e.g. families or medical practices). Some

possibilities for these extensions are given in

successor papers to this one. A more comprehen-

sive account of such extensions is given in De

Boeck and Wilson [29].

Final note

So, what has been learned by analyzing the SE scale

data using an IRM approach that one would not

have gained by using a CTT approach? If a measurer

wishes to order item presentation from those that

are easiest to those that are hardest to endorse, the

results of an IRM analysis of empirical data can

establish such an order for future studies; future

researchers must determine if this is valuable.

Possibly, the most important insight has been

gained not in deep technical analysis, but from

a diagram. The Wright map (Fig. 1) showed that

there is ample scope for incorporating meaningful

category levels into the SE scale, but the current

method of labeling the categories as percentages

allowed for little in the way of interpretation.

Perhaps, if the IRM approach had been available

to the instrument’s authors, a richer basis for

interpretation would have been built in from the

beginning, possibly with fewer categories per item

but each associated with a meaningful level of self-

efficacy. The Wright map also showed that the

categories were well-located with respect to the

respondent locations, and also that there were no im-

portant gaps in the coverage of the latent variable,
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both positive features of the SE scale. The more

detailed information about standard error of meas-

urement indicated that the measurement at the two

extremes was much less accurate than in the middle.

(From Fig. 2, one can see that the measurement

error at the extremes ranged from two to three times

larger than the minimum, excluding the two most

extreme data points.) The analyses indicated that

with the current number of categories, several items

could be dropped to shorten the measure with very

little change in overall reliability, but the paucity of

information already noted at the extremes of the

range indicates the danger in assuming accuracy

throughout the range would likewise be unaffected.

Examination of the Wright map may give clues as

to which items provide the most redundant in-

formation across the span of the content if a dis-

cerning researcher proposed to delete any items.

The DIF analysis gave some comfort, as it showed

that the SE scale was acting in a fairly consistent

way, at least with respect to males and females. The

CTT analysis, in terms of the point-biserial corre-

lations, would likely lead to some concern about the

respondent interpretations of the categories, but this

was shown to be somewhat less problematical in the

IRM analysis. Nevertheless, the IRM analysis

indicates possible problems with respondent inter-

pretations particularly of 20 and 30% response

categories, so future investigations of the SE scale

might start by considering alternative ways to label

categories of responses.
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